Rectal Drug Administration at End of Life - OnePoint Patient Care

Rectal Drug Administration at End of Life

The oral route is by far the most popular and convenient means of drug administration, even in the hospice setting. However, for various reasons (e.g., dysphagia, nausea / vomiting, bowel obstruction, obtundation) as many as 70% of hospice patients will need their medications to be administered by non-oral routes.a-c

Rectal drug administration is probably done more so in hospice than in any other setting. To ensure safe and effective symptom management with rectal administration, follow the five steps outlined below.

Step 1: Determine whether or not your patient is a candidate

Rectal drug administration is not recommended in patients with diarrhea, significant constipation, or anorectal disease.d Patients with neutropenia or thrombocytopenia are potentially at increased risk for infection or bleeding, respectively, with rectal drug administration, so some experts avoid it in these cases, though this is not necessarily an evidence-based practice.d Lastly, despite reported high tolerability, not all patients or caregivers will agree to it due to perceived invasiveness / awkwardness.d

Step 2: Review your patient’s list of medications and determine which ones are suitable

First things first, take this as another opportunity to deprescribe any unnecessary medications… just because you can continue medications by switching to rectal administration, doesn’t always mean you should. Loss of swallow is a very valid reason to consider deprescribing, especially when it’s expected to precede the active dying process.

Rectal absorption of drugs can be highly variable and is influenced by individual drug properties (e.g., lipophilicity, pH, pKa), excipient properties, dosage form (e.g., tablet, suppository, liquid), and individual patient characteristics (e.g., hydration status). Clinical evidence is sometimes available for individual medications to support or refute their suitability for rectal administration (see Table 1).

Some drugs have what’s called a narrow therapeutic index. For these drugs, even small changes in serum drug concentrations can often lead to serious treatment failure or drug toxicity. Due to the significant potential for altered levels when converting to rectal dosing, many of these drugs (e.g., lithium, warfarin) are probably poor candidates unless clinical studies exist to guide dosing.

Table 1: Summary of Literature on Rectal Drug Administration

MedicationNotes
Acetaminophen1-4Suppositories commercially available
Supp, susp: PR bioavailability similar to PO
Amitriptyline5Supp: case report of multi-symptom improvement
Aspirin1,2,6Suppositories commercially available
PR bioavailability of aqueous microenema > supp
PR bioavailability (relative to oral)
Supp (various bases used): 12-90% (mean 54%)
Baclofen7,8Susp: no drug detected
Tab: detectable serum levels, successful treatment reported in 1 of 2 patients
Bumetanide9Supp: observable diuretic effects
PR bioavailability (relative to oral)

Supp: 10-62% (dependent on suppository base)
Carbamazepine1,10-13Susp: PR bioavailability similar to PO
Tab (crushed, in gelatin capsule): therapeutic levels achieved in 5 of 6 patients
Chlorpromazine1,14,15Commercially available suppositories discontinued, but not due to safety or efficacy concerns
Supp: effectively managed symptoms in patients @ EOL
Clonazepam1Therepeutic serum levels and effective seizure control reported
Codeine1OPPC does not recommend
Soln: PR absorption reported
Dependence on hepatic metabolism to active metabolite (morphine) likely a disadvantage; first-pass metabolism limited when given PR
Dexamethasone1Use is anecdotal
Diazepam1,2,16,17Gel, soln: PR bioavailability similar to PO
OPPC does not recommend using suppositories for acute seizure treatment due to erratic and low plasma concentrations
Diclofenac1,2,18Suppositories commercially available in Canada
PR bioavailability (relative to oral enteric-coated tablet)
Supp (as diclofenac sodium): 55%
Diphenhydramine1Use is anecdotal
Doxepin13Therapeutic serum levels achieved with capsules in 3 out of 4 patients
Eslicarbazepine19OPPC does not recommend
Poor PR absorption; possibly extrapolated from oxcarbazepine data since both drugs share the same active metabolite
Fluoxetine20,21OPPC does not recommend
Improved mood reported after PR administration, but therapeutic serum levels not attained
Cap: PR bioavailability significantly reduced
Furosemide22Supp: diuretic effects similar to those expected from tablets
Gabapentin23OPPC does not recommend
Soln: PR bioavailability significantly reduced
Haloperidol24Use is anecdotal
Hydromorphone1,2,25,26Suppositories comercially available
PO to PR conversion: increased PR doses and longer dosing intervals have been suggested
PR bioavailability (relative to oral)
Supp: reduced
Ibuprofen4,27Soln, supp: PR bioavailability similar to PO
Imipramine28Supp: serum levels similar to PO
Indomethacin1,2,29Suppositories commercially available
Soln, supp: PR bioavailability similar to PO
Ketamine2,30-32PR bioavailability (relative to oral)
Supp: ~100-150%; dose reduction may be necessary
Ketoprofen1,2,33Suppositories commercially available in Canada
Supp: PR bioavailability similar to PO
Lamotrigine1,34,35PR bioavailability (relative to oral)
Tab: 63% +/- 33%; ODT: 52% +/- 23%
Suggested PO:PR conversion ratio is 1:1-1.5
Levetiracetam36-39Supp: PR bioavailability similar to PO
Susp: PR plasma concentrations ~50% lower vs. PO
Tab: absorption confirmed in 4 patients
Suggested PO:PR conversion ratios are 1:1 (supp) and 1:2 (susp)
Levodopa40-42OPPC does not recommend
Minimal drug detected in serum; levodopa relies on amino transport system in small intestine for adequate absorption
Levothyroxine43-46Suggested PO:PR conversion ratio is 1:1.4-1.8
Lorazepam1,47-49PR bioavailability (relative to oral)
Soln: variable; ~50-120% (mean 86%)
Methadone1,50-52PR bioavailability (relative to oral)
Soln: similar (80-90%), Supp: 35-58%
Metoclopramide1,53-55Supp: PR bioavailability variable (30-105%), dose-dependent
Metronidazole1,56-58Supp, susp: PR bioavailability similar to PO
Midazolam1,2,59-61Soln: PR bioavailability similar to PO
Morphine1,2,62,63Suppositories commercially available
PR bioavailability generally accepted to be similar to oral
Dose reductions necessary in 11 of 39 of patients who receieved ER tablets PR
Naproxen1,64Soln, supp: PR bioavailability similar to PO; reduced if doses >500mg
Olanzapine65Supp: effective for treating delirium and nausea/vomiting in terminally ill patients
Ondansetron1,66,67Soln: PR bioavailability similar to PO
Supp: PR bioavailability ~50% lower than PO, but equivalent efficacy when dosed similar to PO
Oxcarbazepine19,68OPPC does not recommend
Susp: PR bioavailability significantly reduced
Oxybutynin1,2,69Supp: symptom improvement reported in 48% of patients
Reduced formation of active metabolite may result in less anticholinergic activity; first-pass metabolism limited when given PR
Oxycodone1,2,70,71Suppositories comercially available in Canada
Soln: effective for analgesia
Supp: PR bioavailability similar to PO
Do not administer ER tab PR; increased risk of adverse events due to higher PR absorption
Phenobarbital1,72-76Soln: PR bioavailability (90%) similar to PO
Supp: PR bioavailability reduced (40-74%)
Not recommended for acute seizure treatment due to slower absorption; more significant delay with suppository (vs. solution)
Suggested PO:PR conversion ratios are 1:1 (soln) and 1:2 (supp)
Phenytoin1,77,78OPPC does not recommend
Soln, supp: PR absorption is unreliable
Prednisone2,79OPPC does not recommend
Supp (prednisone): drug detected in urine; PR dose evaluated was significantly higher than typical therapeutic PO doses
Prednisone's dependence on hepatic metabolism to active form (prednisolone) likely a disadvantage; first-pass metabolism limited when given PR
Prochlorperazine1,2Suppositories commercially available; given at higher dose / longer dosing interval vs. PO forms
Dosing for nausea/vomiting
PO: 5-10mg Q6-8 hours; PR: 25mg Q12 hours
Promethazine1,2,80-83Suppositories commercially available
Soln, supp: PR bioavailability similar to PO
Propranolol84-85PR bioavailability at least 2x higher vs. PO after single doses due to first-pass metabolism avoidance; actual extent/significance of difference is unclear after multiple doses (increased bioavailability observed)
Quetiapine86PR bioavailability (relative to oral)
Supp: 189% (single-dose crossover study)
Topiramate87-89Susp: PR bioavailability similar to PO
Suggested PO:PR conversion ratio is 1:1
Tramadol1OPPC does not recommend
Supp: PR bioavailability similar to PO
Dependence on hepatic metabolism to active metabolite likely a disadvantage; first-pass metabolism limited when given PR
Trazodone90Supp: case report of effective antidepressant effects following switch from PO to PR
Valproic acid1,91-93Soln, supp: PR bioavailability similar to PO
Suggested PO:PR conversion ratio is 1:1

Step 3: Determine which dosage form(s) are most suitable

Suppositories aren’t required for rectal drug absorption – they merely help with retention. The rectal administration of liquids allows for faster absorption, but volumes should be limited to 10-25ml to prevent discomfort and/or spontaneous expulsion. One instance where this is of clinical importance is with rectal diazepam for seizures. Compounded diazepam suppositories are inappropriate to use for treating status epilepticus because effective serum concentrations are reached too slowly.e  Instead, the solution for injection can be administered rectally as an alternative to commercially available diazepam rectal gel.We’ve previously posted about the rectal administration of anticonvulsants. Click here to revisit that post.

Solid oral dosage forms like tablets and capsules can be administered rectally as well.c  The Macy Catheter is a medical device that’s designed to facilitate rectal drug administration in a simplified and dignified manner. Included with the catheter is an apparatus designed to crush pills and dissolve them into aqueous solution.

Step 4: Determine the most appropriate dose(s)

For some drugs, oral to rectal conversion ratios have been approximated based on available bioavailability data and are described in Table 1. In the absence of this information, it’s reasonable to start with the same dose that was given orally, then adjusting as needed.

Step 5: Monitor for efficacy, adverse effects, toxicity

The final step of this process is to monitor how things are going post-conversion, primarily that the drugs remain effective, since rectal absorption is often less complete than oral absorption. Laboratory monitoring of serum drug concentrations is often avoided in the hospice setting to minimize patient exposure to needle sticks. However, if the drug has a narrow therapeutic index or symptom control is noted to be diminished following the conversion then it may make sense.

Discomfort, local irritation, and urge to defecate are potential adverse effects, though rectal drug administration is generally well-tolerated. Drug toxicity is uncommon, because, as mentioned above, rectal absorption is generally less than or equal to oral absorption, but typically not more.

Conclusion

Rectal administration of medications is almost never anyone’s first choice, but it can be necessary, particularly for terminally ill patients. Following the steps above will help maximize your chances for successful symptom control.

Written by: OnePoint Patient Care Clinical Team

Article References

a) Kestenbaum M, Vilches A, Messersmith S, et al. Alternate Routes to Oral Opioid Administration in Palliative Care: A Review and Clinical Summary. Pain Medicine. 2014;15:1129-1153. doi:10.1111/pme.12464

b) Mercadante S. When oral morphine fails in cancer pain: The role of the alternative routes. American Journal of Hospice and Palliative Care. 1998;15(6):333-342. doi:10.1177/104990919801500607

c) Samal R. Davis M. Fast Facts and Concepts #257 Palliative Care Per Rectum. Palliative Care Network of Wisconsin. May 2012. Updated June 2021. Accessed September 28, 2023. https://www.mypcnow.org/fast-fact/palliative-care-per-rectum/

d) Davis MP, et al. Symptom control in cancer patients: the clinical pharmacology and therapeutic role of suppositories and rectal suspensions. Support Care Cancer. 2002;10(2):117-138. doi:10.1007/s00520-001-0311-6.

e) Moolenaar F, et al. Biopharmaceutics of rectal administration of drugs in man IX. Comparative biopharmaceutics of diazepam after single rectal, oral, intramuscular and intravenous administration in man. Int J Pharm. 1980;5(2):127-137. doi:10.1016/0378-5173(80)90017-4.

Table References

  1. Davis MP, et al. Symptom control in cancer patients: the clinical pharmacology and therapeutic role of suppositories and rectal suspensions. Support Care Cancer. 2002;10(2):117-138. doi: 10.1007/s00520-001-0311-6.
  2. Lexicomp Online, Lexi-Drugs Online, Hudson, Ohio: Wolters Kluwer Clinical Drug Information, Inc.; 2024.
  3. Bannwarth B, et al. Pharmacologic basis for using paracetamol: pharmacokinetic and pharmacodynamic issues. Drugs. 2003;63(Spec No 2):5-13. PMID: 14758786
  4. van Hoogdalem EJ, et al. Pharmacokinetics of rectal drug administration, Part II. Clinical applications of peripherally acting drugs, and conclusions. Clin Pharmacokinet. 1991;21(2):110-28. doi: 10.2165/00003088-199121020-00003.
  5. Adams S. Amitriptyline suppositories. N Engl J Med. 1982;306(16):996. doi:10.1056/nejm198204223061622
  6. Parrott EL. Salicylate absorption from rectal suppositories. J Pharm Sci. 1971;60(6):867-872. doi:10.1002/jps.2600600613
  7. Kriel RL, et al. Failure of absorption of baclofen after rectal administration. Pediatr Neurol. 1997;16(4):351-352. doi:10.1016/s0887-8994(97)00033-7
  8. Selge C, et al. Rectal Administration of Baclofen at the End of Life. J Pain Symptom Manage. 2018;56(5):e1-e3. doi:10.1016/j.jpainsymman.2018.07.023
  9. Yagi N, et al. Bioavailability and diuretic effect of bumetanide following rectal administration of suppositories containing weak acids in human subjects. Biol Pharm Bull. 1993;16(11):1124-1129. doi:10.1248/bpb.16.1124
  10. Graves NM, et al. Relative bioavailability of rectally administered carbamazepine suspension in humans. Epilepsia. 1985;26(5):429-433. doi:10.1111/j.1528-1157.1985.tb05675.x
  11. Neuvonen PJ, et al. Bioavailability of rectally administered carbamazepine mixture. Br J Clin Pharmacol. 1987;24(6):839-841. doi:10.1111/j.1365-2125.1987.tb03258.x
  12. Patel V, et al. Rectal carbamazepine as effective long-acting treatment after cluster seizures and status epilepticus. Epilepsy Behav. 2014;31:31-33. doi:10.1016/j.yebeh.2013.10.027
  13. Storey P, et al. Rectal doxepin and carbamazepine therapy in patients with cancer. N Engl J Med. 1992;327(18):1318-1319. doi: 10.1056/NEJM199210293271816
  14. Yuen M, et al. Chlorpromazine hydrochloride: Summary Report. UMB Digital Archive. 2020. Accessed here
  15. McIver B, et al. The use of chlorpromazine for symptom control in dying cancer patients. J Pain Symptom Manage. 1994;9(5):341-345. doi:10.1016/0885-3924(94)90193-7
  16. Moolenaar F, et al. Biopharmaceutics of rectal administration of drugs in man IX. Comparative biopharmaceutics of diazepam after single rectal, oral, intramuscular and intravenous administration in man. Int J Pharm. 1980;5(2):127-137. doi: 10.1016/0378-5173(80)90017-4.
  17. Rey E, et al. Pharmacokinetic optimization of benzodiazepine therapy for acute seizures: Focus on delivery routes. Clin Pharmacokinet. 1999;36(6):409-424. doi:10.2165/00003088-199936060-00003
  18. Idkaidek NM, et al. Determination of the Population Pharmacokinetic Parameters of Sustained-Release and Enteric-Coated Oral Formulations, and the Suppository Formulation of Diclofenac Sodium by Simultaneous Data Fitting Using NONMEM. Biopharm Drug Dispos. 1998;19:169-174. doi: 10.1002/(sici)1099-081x(199804)19:3<169::aid-bdd83>3.0.co;2-c
  19. Asadi-Pooya AA, et al. Recommendations for treatment strategies in people with epilepsy during times of shortage of antiseizure medications. Epileptic Disord. 2022;24(5):751-764. doi:10.1684/epd.2022.1468
  20. Teter CJ, et al. Relative rectal bioavailability of fluoxetine in normal volunteers. J Clin Psychopharmacol. 2005;25(1):74-78. doi:10.1097/01.jcp.0000150220.46254.b1
  21. Thompson D, et al. Nonenteral routes of administration for psychiatric medications. A literature review. Psychosomatics. 1999;40(3):185-192. doi:10.1016/S0033-3182(99)71234-X
  22. Regdon G, et al. Formulation and in vitro examination of furosemide containing suppositories and preliminary experiences of their clinical use. Pharmazie. 1996;51(2):116-119. Accessed through Pubmed
  23. Kriel RL, et al. Failure of absorption of gabapentin after rectal administration. Epilepsia. 1997;38(11):1242-1244. doi:10.1111/j.1528-1157.1997.tb01223.x
  24. Yuen M, et al. Haloperidol: Summary Report. UMB Digital Archive. 2020. Accessed here
  25. Parab PV, et al. Pharmacokinetics of hydromorphone after intravenous, peroral and rectal administration to human subjects. Biopharm Drug Dispos. 1988;9(2):187-199. doi:10.1002/bod.2510090207
  26. Ritschel WA, et al. Absolute bioavailability of hydromorphone after peroral and rectal administration in humans: saliva/plasma ratio and clinical effects. J Clin Pharmacol. 1987;27(9):647-653. doi:10.1002/j.1552-4604.1987.tb03082.x
  27. Eller MG, et al. Absorption kinetics of rectally and orally administered ibuprofen. Biopharm Drug Dispos. 1989;10(3):269-278. doi:10.1002/bdd.2510100306
  28. Chaumeil JC, et al. Formulation of suppositories containing imipramine and clomipramine chlorhydrates. Drug Dev Ind Pharm. 1988;14(15-17):2225-2239, doi: 10.3109/03639048809152012
  29. Jensen KM, et al. Bioavailability of indomethacin after intramuscular injection and rectal administration of solution and suppositories. Acta Pharmacol Toxicol. 1985;57(5):322-327. doi:10.1111/j.1600-0773.1985.tb00052.x
  30. Glue P, et al. Influence of formulation and route of administration on ketamine’s safety and tolerability: systematic review. Eur J Clin Pharmacol. 2021;77(5):671-676. doi:10.1007/s00228-020-03047-z
  31. Malinovsky JM, et al. Ketamine and norketamine plasma concentrations after i.v., nasal and rectal administration in children. Br J Anaesth. 1996;77(2):203-207. doi:10.1093/bja/77.2.203
  32. Yanagihara Y, et al. Plasma concentration profiles of ketamine and norketamine after administration of various ketamine preparations to healthy Japanese volunteers. Biopharm Drug Dispos. 2003;24(1):37-43. doi:10.1002/bdd.336
  33. Ishizaki T, et al. Pharmacokinetics of ketoprofen following single oral, intramuscular and rectal doses and after repeated oral administration. Eur J Clin Pharmacol. 1980;18(5):407-414. doi:10.1007/BF00636794
  34. Birnbaum AK, et al. Rectal absorption of lamotrigine compressed tablets. Epilepsia. 2000;41(7):850-853. doi:10.1111/j.1528-1157.2000.tb00252.x
  35. Birnbaum AK, et al. Relative bioavailability of lamotrigine chewable dispersible tablets administered rectally. Pharmacotherapy. 2001;21(2):158-162. doi:10.1592/phco.21.2.158.34104
  36. Dunteman E. Levetiracetam administered by the rectal route is effective in treating neuropathic pain. J Pain2004;5(3):S50. doi:10.1016/j.jpain.2004.02.166
  37. Gustafson MC, Penovich PE, Frost MD. Levetiracetam absorption after rectal administration: 2 case reports. Epilepsia. 2005; 46(Suppl 8):211. [Abstract 2.358] Presented at: American Epilepsy Society Annual Meeting, Dec 2-5, 2005. Washington, USA. doi:10.1111/j.1528-1167.2005.460801_19.x
  38. Rémi C, et al. Rectal use of levetiracetam: best practice report for a stepwise approach for sustainable off-label decision making and treatment. Int J Clin Pharm. 2023;45(3):774-780. doi:10.1007/s11096-023-01539-3
  39. Slikkerveer M, et al. Pharmacokinetics of levetiracetam after rectal administration in healthy volunteers. Pharmaceutisch Weekblad. 2010;145(37):151-153. Accessed through researchgate
  40. Cooper SD, et al. Case report: successful use of rectally administered levodopa-carbidopa. Can Fam Physician. 2001;47:112-113. Accessed through PMCID: PMC2014704
  41. Eisler T, et al. Absorption of levodopa after rectal administration. Neurology. 1981;31(2):215-217. doi:10.1212/wnl.31.2.215
  42. Vogelzang JM, et al. Effect of rectal levodopa administration: a case report. Case Rep Neurol. 2015;7(3):209-212. doi:10.1159/000441489
  43. Kashiwagura Y, et al. Clinical efficacy and pharmacokinetics of levothyroxine suppository in patients with hypothyroidism. Biol Pharm Bull. 2014;37(4):666-670. doi:10.1248/bpb.b13-00998
  44. Obeidat KA, et al. Successful management of hypothyroidism in gastric outlet obstruction using levothyroxine rectal enemas: a case report. Am J Case Rep. 2018;19:903-905. doi:10.12659/AJCR.909437
  45. Ritter MJ, et al. Alternative routes of levothyroxine administration for hypothyroidism. Curr Opin Endocrinol Diabetes Obes. 2020;27(5):318-322. doi:10.1097/MED.0000000000000558
  46. Ybarra M, et al. Rectal levothyroxine for the treatment of hypothyroidism: a case study. Pediatrics. 2018;142(2):e20173317. doi:10.1542/peds.2017-3317
  47. Appleton R, et al. Lorazepam versus diazepam in the acute treatment of epileptic seizures and status epilepticus. Dev Med Child Neurol. 1995;37(8):682-688. doi:10.1111/j.1469-8749.1995.tb15014.x
  48. Graves NM, et al. Bioavailability of rectally administered lorazepam. Clin Neuropharmacol. 1987;10(6):555-559. doi:10.1097/00002826-198712000-00007
  49. Lyons N, et al. An alternative for rapid administration of medication and fluids in the emergency setting using a novel device. Am J Emerg Med. 2015;33(8): e5-6. doi:10.1016/j.ajem.2015.01.028
  50. Dale O, et al. Bioavailabilities of rectal and oral methadone in healthy subjects. Br J Clin Pharmacol. 2004;58(2):156-162. doi:10.1111/j.1365-2125.2004.02116.x
  51. Moolenaar F, et al. Preliminary study on the absorption profile after rectal and oral administration of methadone in human volunteers. Pharm Weekbl Sci. 1984;6(6):237-240. doi:10.1007/BF01954551
  52. Ripamonti C, et al. Rectal methadone in cancer patients with pain. A preliminary clinical and pharmacokinetic study. Ann Oncol. 1995;6(8):841-843. doi:10.1093/oxfordjournals.annonc.a059327
  53. Block W, et al. The pharmacokinetics, bioequivalence and bioavailability of different formulations of metoclopramide in man. Arzneimittelforschung. 1981;31(6):1041-1045. Accessed through Pubmed
  54. Hardy F, et al. A pharmacokinetic study of high-dose metoclopramide suppositories. J Clin Pharm Ther. 1990;15(1):21-24. doi:10.1111/j.1365-2710.1990.tb00351.x
  55. Trapnell BC, et al. Metoclopramide suppositories in the treatment of diabetic gastroparesis. Arch Intern Med. 1986;146(11):2278-2279. doi:10.1001/archinte.1986.00360230224032
  56. Bergan T, et al. Pharmacokinetics of metronidazole in healthy adult volunteers after tablets and suppositories. Chemotherapy. 1980;26(4):231-241. doi:10.1159/000237911
  57. Ioannides L, et al. Rectal administration of metronidazole provides therapeutic plasma levels in postoperative patients. N Engl J Med. 1981;305(26):1569-1570. doi:10.1056/NEJM198112243052607
  58. Vromans H, et al. Rectal absorption of metronidazole from polyethylene glycol suppositories. Pharm Weekbl Sci. 1984;6(1):18-20. doi:10.1007/BF01960193
  59. Clausen TG, et al. Pharmacokinetics of midazolam and alpha-hydroxy-midazolam following rectal and intravenous administration. Br J Clin Pharmacol. 1988;25(4):457-463. doi:10.1111/j.1365-2125.1988.tb03330.x
  60. Jensen B, et al. Oral versus rectal midazolam as a pre-anaesthetic sedative in children receiving dental treatment under general anaesthesia. Acta Paediatr. 2002;91(8):920-925. doi: 10.1111/j.1651-2227.2002.tb02856.x
  61. Saint-Maurice C, et al. The pharmacokinetics of rectal midazolam for premedication in children. Anesthesiology. 1986;65(5):536-538. doi:10.1097/00000542-198611000-00019
  62. De Conno F, et al. Role of rectal route in treating cancer pain: a randomized crossover clinical trial of oral versus rectal morphine administration in opioid-naive cancer patients with pain. J Clin Oncol. 1995;13(4):1004-1008. doi:10.1200/JCO.1995.13.4.1004
  63. Maloney CM, et al. The rectal administration of MS Contin: Clinical implications of use in end stage cancer. Am J Hospice Care. 1989;6(4):34-35. doi:10.1177/104990918900600409
  64. Desager JP, et al. Naproxen plasma levels in volunteers after single-dose administration by oral and rectal routes. J Clin Pharmacol. 1976;16(4):189-193. doi:10.1002/j.1552-4604.1976.tb01516.x
  65. Matsumoto K, et al. Pharmaceutical studies on and clinical application of olanzapine suppositories prepared as a hospital preparation. J Pharm Health Care Sci. 2016;2:20. doi:10.1186/s40780-016-0055-6
  66. Hsyu PH, et al. Comparison of the pharmacokinetics of an ondansetron solution (8 mg) when administered intravenously, orally, to the colon, and to the rectum. Pharm Res. 1994;11(1):156-159. doi:10.1023/a:1018974501232
  67. VanDenBerg CM, et al. Pharmacokinetics of three formulations of ondansetron hydrochloride in healthy volunteers: 24-mg oral tablet, rectal suppository, and i.v. infusion. Am J Health Syst Pharm. 2000;57(11):1046-1050. doi:10.1093/ajhp/57.11.1046
  68. Clemens PL, et al. Relative bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension. Clin Drug Investig. 2007;27(4):243-250. doi:10.2165/00044011-200727040-00003
  69. Winkler HA, et al. Treatment of detrusor instability with oxybutynin rectal suppositories. Int Urogynecol J Pelvic Floor Dysfunct. 1998;9(2):100-102. https://doi.org/10.1007/bf01982217
  70. Leow KP, et al. Comparative oxycodone pharmacokinetics in humans after intravenous, oral, and rectal administration. Ther Drug Monit. 1992;14(6):479-484. doi:10.1097/00007691-199212000-00008
  71. Leow KP, et al. Pharmacokinetics and pharmacodynamics of oxycodone when given intravenously and rectally to adult patients with cancer pain. Anesth Analg. 1995;80(2):296-302. doi:10.1097/00000539-199502000-00016
  72. Lam YW, et al. Pharmacokinetics of phenobarbital in microenema via macy catheter versus suppository. J Pain Symptom Manage. 2016;51(6):994-1001. doi:10.1016/j.jpainsymman.2015.12.339
  73. Graves NM, et al. Relative bioavailability of rectally administered phenobarbital sodium parenteral solution. DICP. 1989;23(7-8):565-568. doi:10.1177/1060028089023007-806
  74. Moolenaar F, et al.Biopharmaceutics of rectal administration of drugs in man 7. Absorption rate and bioavailability of phenobarbital and its sodium salt from rectal dosage forms. Int J Pharm. 1979;4(2):99-109. doi:10.1016/0378-5173(79)90057-7
  75. Setla J, et al. Home palliative sedation using phenobarbital suppositories: time to death, patient characteristics, and administration protocol. Am J Hosp Palliat Care. 2019;36(10):871-876. doi:10.1177/1049909119839695
  76. Leppik IE, et al. Intramuscular and rectal therapies of acute seizures. Epilepsy & Behavior. 2015;49:307-312. doi:10.1016/j.yebeh.2015.05.001
  77. Burstein AH, et al. Absorption of phenytoin from rectal suppositories formulated with a polyethylene glycol base. Pharmacotherapy. 2000;20(5):562-567. doi:10.1592/phco.20.6.562.35157
  78. Chang SW, et al. Absorption of rectally administered phenytoin: a pilot study. Ann Pharmacother. 1999;33(7-8):781-786. doi:10.1345/aph.18335
  79. Iannella L, et al. Urinary excretion profile of prednisolone and prednisone after rectal administration: Significance in antidoping analysis. Drug Testing & Analysis. 2022;14:2007-2016. doi:10.1002/dta.3352
  80. Cantisani C, et al. Topical promethazine side effects: our experience and review of the literature. Biomed Res Int. 2013; 151509. doi:10.1155/2013/151509
  81. Strenkoski-Nix LC, et al. Pharmacokinetics of promethazine hydrochloride after administration of rectal suppositories and oral syrup to healthy subjects. Am J Health Syst Pharm. 2000;57(16):1499-1505. doi:10.1093/ajhp/57.16.1499
  82. DeBoer AG, et al. Drug absorption by sublingual and rectal routes. Br J Anaesth. 1984;56:69-82. doi:10.1093/bja/56.1.69
  83. Brunton LL, et el, eds. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 12th New York, NY:McGraw-Hill Medical;2011.
  84. Bialy LP, et al. Mucosal delivery systems of antihypertensive drugs: A practical approach in general practice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(2):71-78. doi:10.5507/bp.2018.022
  85. Cid E, et al. Plasma concentrations and bioavailability of propranolol by oral, rectal and intravenous administration in man. Biopharm Drug Dispos. 1986;7:559-566. doi:10.1002/bdd.2510070605
  86. Leung JG, et al. A single-dose crossover pharmacokinetic comparison study of oral, rectal and topical quetiapine in healthy adults. Clin Pharmacokinet. 2016;55(8):971-976. doi:10.1007/s40262-016-0368-5
  87. Bonwetsch R. Rectal administration of topiramate in a critically ill patient. Aesnet. 2001. Accessed through AES
  88. Conway JM, et al. Relative bioavailability of topiramate administered rectally. Epilepsy Res. 2003;54(2-3):91-96. doi:10.1016/s0920-1211(03)00083-4
  89. Vuong MT, et al. Topiramate rectal suspensions in pediatric patients. Seizure. 2021;85:45-47. doi:10.1016/j.seizure.2020.12.022
  90. Mirassou MM. Rectal antidepressant medication in the treatment of depression. J Clin Psychiatry. 1998;59(1):29. doi:10.4088/jcp.v59n0107a
  91. Holmes GB, et al. Absorption of valproic acid suppositories in human volunteers. Arch Neurol. 1989;46(8):906-909. doi:10.1001/archneur.1989.00520440100026
  92. Moolenaar F, et al. Absorption rate and bioavailability of valproic acid and its sodium from rectal dosage forms. Eur J Clin Pharmacol. 1980;17(4):309-315. doi:10.1007/BF00625806
  93. Yoshiyama Y, et al. Chronopharmacokinetic study of valproic acid in man: comparison of oral and rectal administration. J Clin Pharmacol. 1989;29(11):1048-1052. doi:10.1002/j.1552-4604.1989.tb03277.x